Doubly Excited States – Some Comparisons of theory and experiments

Bin Lin* and Gordon Berry,

 * Now at Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
 (Ph.D thesis work – Notre Dame 2005 is a study of doublyexcited sextet states in O IV)

Not published – part of Ph.D. thesis of Bin Lin

"Lining up the electron spins...." or "Exciting the inner shell electrons..."

3-electrons (lithium sequence) → quartets [also sodium and other alkali sequences]

4-electrons (beryllium sequence)-> quintets5-electrons (boron sequence)-> sextets

An important early paper: Example of the decay of the lowest (METASTABLE) state of these "high-spin states"

"Decay of ⁴P^{5/2} Autoionizing States of Ions in the Li Isoelectronic Sequence," K.T. Cheng, C.P. Lin, and W.R. Johnson, Phys. Letts. <u>48A</u>, 437 (1974).

Why are we interested in sextet states?

Doubly excited sextet states in boron-like ions

Term diagram of doubly excited sextet states in O IV.

- Five electrons with aligned spins
- well above several ionization levels
- metastable: $\tau \approx 10^{-6} - 10^{-9}$ s.

Fast beam-foil spectroscopy at the 2 MeV Van de Graaff accelerator at the University of Liège

The $1s2s2p^23d \, {}^6F_J$ - $1s2p^33d \, {}^6D_{J'}$ transitions in the beam-foil spectra of oxygen, recorded at the different energies. The beam energies and spectrometer slit widths are shown.

The doubly excited sextet levels in O IV

The transition wavelengths are in Angströms.

Grotrian diagram of doubly excited sextet levels

1s2p²nln'l' ⁶L in O IV. The units of wavelengths are Å.

Decay curves of O IV sextets

EBIT spectra

of Tungsten

Tokyo 2012

Visible Transitions in Highly Charged Tungsten Ions: 365 - 475 nm

Akihiro KOMATSU¹, Junpei SAKODA¹, Maki MINOSHIMA¹, Hiroyuki A. SAKAUE², Xiao-Bin DING³, Daiji KATO², Izumi MURAKAMI², Fumihiro KOIKE⁴) and Nobuyuki NAKAMURA^{1,2}

Lines identified by Fudan students!!

- Table 1 Wavelengths (in air) of the observed visible transitions in highly charged tungsten W^{q+} .
 - q wavelength (nm)
 - 28 365.25*, 393.06*
 26 389.41*, 464.68*, 501.99*
 - 25 383.99*, 387.3*†, 400.88*, 406.92*, 421.28*, 451.15, 467.59, 469.21*, 493.62
 - 24 364.58, 374.34, 375.70, 379.64, 386.23, 389.89, 392.62, 406.49, 408.58, 409.97, 412.2†, 419.35*, 425.17, 447.36, 467.80, 468.22, 471.18
 - 23 366.48, 375.18, 381.25[‡], 388.27, 389.19[‡],
 393.69[‡], 409.44^{*}, 411.28[‡], 432.32^{*}, 432.66,
 437.90, 438.30, 441.52, 449.46, 459.25
 - 22 384.32, 446.95
 - 21 382.21, 385.16‡, 415.83, 424.17, 442.69, 444.58, 450.70, 451.17, 459.99, 463.50, 468.39
 - 20 388.25, 402.91, 406.62, 415.06†, 422.05, 425.27, 433.14, 435.21‡, 435.82, 438.02, 448.47, 462.40
 - 19 376.38‡,402.52,418.90‡,433.89,441.06, 456.43,474.49
 - 18 375.90, 376.85, 396.83, 397.42‡, 401.22, 419.68, 434.01
 - 17 373.69, 391.93, 423.65‡
 - 16 455.52‡, 472.39
 - 15 372.41‡, 374.39, 378.14, 384.15, 384.76, 412.17, 414.29, 420.52, 424.45, 426.47, 428.43, 436.92, 450.23
 - 14 462.59‡
 - 13 457.26, 459.08, 472.68
 - 12 401.38, 451.68
 - 11 388.19, 399.81, 428.79‡, 446.04, 452.77, 454.64, 466.48
 - 8 387.15, 405.73

*Reported in our previous paper [4, 6, 11], †blend lines, ‡weak lines.

Any "long-lived Rydberg transitions" in EBIT spectra?

For any Rydberg transition Between n₁ and n₂ (easier than the GRASP code!)

 $\mathbf{E} = \zeta^2 \ge 109737(1/n_1^2 - 1/n_2^2)$

Examples for W (12+) $\zeta = 13$ then E(10-11) gives wavelength $\lambda = 310.7$ nm E(11-12) gives wavelength $\lambda = 408.5$ nm E(12-13) gives wavelength $\lambda = 524.9$ nm

Check the Japanese spectrum....

Conclusion:

NO Rydberg YRAST transitions seen

Therefore, lines must be between low-lying levels

Just a brief selection.....(from Sally)

